An international research team has found they can increase corn productivity by targeting the enzyme in charge of capturing CO2 from the atmosphere.
Scientists at ANU have engineered tiny carbon-capturing engines from blue-green algae into plants, in a breakthrough that promises to help boost the yields of important food crops such as wheat, cowpeas and cassava.
The ANU and CSIRO will set up a new farming innovation centre at ANU to advance research, education and technology in farming and global food production, thanks to more than $1 million in new funding commitments.
Simon Williams uses protein biochemistry and structural biology approaches to understand how plant pathogens cause disease and how the plant immune system prevents infection.
Timor-Leste is a beautiful island nation in the north west of Australia and is an important neighbour. This talk will introduce Timor-Leste from various perspectives. It will highlight the importance of biosecurity to Timor-Leste’s economy and why this matters to Australia.
Synthetic chemistry and synthetic biology offer complementary tools for manipulating the 3D architecture and function of biomolecules. I will outline two different projects that exemplify our hybrid chemical biology approach, highlighting divergent applications in catalysis and cancer therapy.
Genomes have a highly organised architecture (non-random organisation of functional and non-functional genetic elements within chromosomes) that is essential for many biological functions, particularly, gene expression and reproduction.
During nitrogen-fixing symbiosis, soil bacteria called rhizobia induce the formation of root nodules on legume roots, in which they fix atmospheric nitrogen that the plant can use as a nitrogen source.
In my project I have examined the roles and interplay of the plant signalling factors, flavonoids, reactive oxygen species (ROS), and cytokinin in establishment of symbiotic infection of rhizobia in the roots of the model legume Medicago truncatula.