An international research team has found they can increase corn productivity by targeting the enzyme in charge of capturing CO2 from the atmosphere.
Scientists at ANU have engineered tiny carbon-capturing engines from blue-green algae into plants, in a breakthrough that promises to help boost the yields of important food crops such as wheat, cowpeas and cassava.
The ANU and CSIRO will set up a new farming innovation centre at ANU to advance research, education and technology in farming and global food production, thanks to more than $1 million in new funding commitments.
Simon Williams uses protein biochemistry and structural biology approaches to understand how plant pathogens cause disease and how the plant immune system prevents infection.
The tiny, self-contained genetic system of the chloroplast (or plastid) in the green alga Chlamydomonas reinhardtii is well suited for genetic engineering and has recently seen a surge in the deployment of synthetic biology approaches.
In my talk, I’d like to introduce two of my postdoctoral studies where I explored the independent expression of two genes in tobacco: Rubisco activase (RCA) and a spider silk gene, Major ampullate spidroin 1 (MaSp1).
In chloroplasts of embryophytes, superwobbling between codons and anticodons has been demonstrated to facilitate translation of the standard genetic code by a minimized set of only 30 tRNAs (Rogalski et al., 2008).
The timing of flowering needs to be tightly controlled to maximize reproductive success. Plants perceive seasonal cues (e.g., day length and temperature) to adjust the timing of flowering.
Nocturnal stomatal conductance (gsn) represents a significant, enigmatic source of water-loss, with implications for whole plant metabolism, thermal regulation and water-use efficiency.