Scientists from ANU are drawing inspiration from plants to develop new techniques to separate and extract valuable minerals, metals and nutrients from resource-rich wastewater.
Not content with the challenging conditions for crop production here on Earth, Associate Professor Caitlin Byrt is lending her expertise to an ambitious space mission to grow plants on the moon.
ANU will lend its unique expertise in plant biology to an ambitious mission led by Australian space start-up Lunaria One that aims to grow plants on the moon by as early as 2025.
A team of researchers from the ANU Research School of Biology and CSIRO has been awarded more than $1 million to develop technology that harvests valuable resources from our wastewater.
Using cutting-edge technology, biologist Dr Benjamin Schwessinger from The Australian National University (ANU) is helping to protect the biosecurity of Australia's unique flora and agricultural industry.
Scientists from ANU and James Cook University have identified an "exquisite" natural mechanism that helps plants limit their water loss with little effect on carbon dioxide intake - an essential process for photosynthesis, plant growth and crop yield.
The tiny, self-contained genetic system of the chloroplast (or plastid) in the green alga Chlamydomonas reinhardtii is well suited for genetic engineering and has recently seen a surge in the deployment of synthetic biology approaches.
In my talk, I’d like to introduce two of my postdoctoral studies where I explored the independent expression of two genes in tobacco: Rubisco activase (RCA) and a spider silk gene, Major ampullate spidroin 1 (MaSp1).
In chloroplasts of embryophytes, superwobbling between codons and anticodons has been demonstrated to facilitate translation of the standard genetic code by a minimized set of only 30 tRNAs (Rogalski et al., 2008).
The timing of flowering needs to be tightly controlled to maximize reproductive success. Plants perceive seasonal cues (e.g., day length and temperature) to adjust the timing of flowering.
Nocturnal stomatal conductance (gsn) represents a significant, enigmatic source of water-loss, with implications for whole plant metabolism, thermal regulation and water-use efficiency.