Scientists at the Australian Research Council (ARC) ARC Centre of Excellence for Translational Photosynthesis (CoETP) have found that some plants have ten times more communication channels inside their leaves than other plants, which they think is a crucial factor in determining photosynthetic efficiency.
Photosynthesis is an essential biological process that depends on the activity of the enzyme Rubisco which catalyses carbon fixation. Rubisco is slow, inefficient and cannot accurately distinguish between CO2 and O2. ANU researchers have been trying to improve the efficiency of Rubisco in crop plants.
The investigations into carbon fixation and gas exchange by RSBS researchers were essential to the understanding of photosynthesis, and the development of new processes to increase the efficiency of the photosynthetic process in agriculture.
Carboxysomes are polyhedral protein micro-compartments in cyanobacteria which concentrate CO2 and increase the efficiency of carbon fixation. In 1993, RSBS researchers Dean Price, Murray Badger and Susan Howitt determined the genetic sequence encoding for the proteins that form the protein shell of a carboxysome.
Legumes are an interesting plant to study due to their symbiotic relationship with nitrogen fixing bacteria called Rhizobia, which are housed within specialised root structures called nodules. The work of ANU researchers has been very important for our understanding of symbiosis, nodule formation and nitrogen fixation.
Rhynchosporium commune is a pathogenic fungus causing barley scald disease. Although scald disease has become a significant issue for commercial barley growers, the molecular mechanisms underpinning the disease are poorly understood.
Seeds provide 70% of global food resources, being the most valuable output from plant production. They also play a critical role in agriculture because the lifecycle of most crops begins from seed germination.
C4 photosynthesis involves a number of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis.
Nitrogen (N) is a primary nutrient that is essential to the survival of all living organisms. Crops are inefficient in their N use, losing 50-70% of applied N, which transforms to reactive nitrogen Nr, to the environment.
The interaction of C-TERMINALLY ENCODED PEPTIDEs (CEPs) with CEP RECEPTOR1 (CEPR1) controls root growth and development, as well as nitrate uptake, but the underlying protein interactions involved are yet to be comprehensively defined.