An international research team has found they can increase corn productivity by targeting the enzyme in charge of capturing CO2 from the atmosphere.
Scientists at ANU have engineered tiny carbon-capturing engines from blue-green algae into plants, in a breakthrough that promises to help boost the yields of important food crops such as wheat, cowpeas and cassava.
The ANU and CSIRO will set up a new farming innovation centre at ANU to advance research, education and technology in farming and global food production, thanks to more than $1 million in new funding commitments.
Simon Williams uses protein biochemistry and structural biology approaches to understand how plant pathogens cause disease and how the plant immune system prevents infection.
The slow kinetics and poor substrate specificity of the key photosynthetic CO2-fixing enzyme Rubisco have prompted the repeated evolution of Rubisco containing compartments known as pyrenoids in diverse algal lineages and carboxysomes in prokaryotes.
Bipolaris sorokiniana is a hemibiotrophic pathogen causing spot blotch (SB) and common root rot (CRR) in both wheat and barley, and is causal to significant yield and economic losses.
Prior to the discovery of C4 photosynthesis by Hal Hatch and Roger Slack in 1966 there were clues that some plants partitioned photosynthesis between specific leaf cell types.
Mathematical models of leaf photosynthesis provide a mechanistic base for predicting and assessing changes in photosynthetic CO2 fixation in different environments and provide a means of scaling predictions from leaves to canopies and regions.