Scientists from ANU are drawing inspiration from plants to develop new techniques to separate and extract valuable minerals, metals and nutrients from resource-rich wastewater.
Not content with the challenging conditions for crop production here on Earth, Associate Professor Caitlin Byrt is lending her expertise to an ambitious space mission to grow plants on the moon.
ANU will lend its unique expertise in plant biology to an ambitious mission led by Australian space start-up Lunaria One that aims to grow plants on the moon by as early as 2025.
A team of researchers from the ANU Research School of Biology and CSIRO has been awarded more than $1 million to develop technology that harvests valuable resources from our wastewater.
Using cutting-edge technology, biologist Dr Benjamin Schwessinger from The Australian National University (ANU) is helping to protect the biosecurity of Australia's unique flora and agricultural industry.
Scientists from ANU and James Cook University have identified an "exquisite" natural mechanism that helps plants limit their water loss with little effect on carbon dioxide intake - an essential process for photosynthesis, plant growth and crop yield.
Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns.
As sessile organisms, plants have evolved a multitude of mechanisms to acclimate to their environment enabling the plant to optimise development and reproduction, and fight off or resist both biotic and abiotic stresses they may encounter through their life cycle.
C4 photosynthesis, a carbon concentrating mechanism, evolved as an adaptation to improve photosynthetic CO2 assimilation in terrestrial plants under conditions of low CO2, increased temperatures and varying rainfall patterns.
Cell-to-cell communication is essential for the co-ordination of responses in all multicellular organisms. One mechanism plants employ as defence against pathogens is restriction of cell-to-cell communication by plasmodesmata closure during infection.