Broer Group - Membrane transport and nutrition

Nutrients are essential for the growth and maintenance of cells and organisms. Membrane transporters are essential to deliver nutrients to cells and tissues and thus play a significant role in the regulation of metabolism. We study the role of amino acid transport in the onset of insulin resistance and the regulation of carbohydrate metabolism. Amino acid transport is crucial for growing cells and thus is a target to curtail cancer growth. We are investigating in how far amino acid transport in cancer cells is different from normal cells. In addition to amino acid transport we investigate the role of phospholipid transport in cell development and signalling in the immune system.

Group Leader

Honours Student

PhD Students

Postdoctoral Fellow

Research Officer

Filter by keyword

Selected publications

  • Bröer S, Gauthier-Coles G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J Nutr. 2022 Jan 11;152(1):16-28. doi:
    10.1093/jn/nxab342. PMID: 34718668; PMCID: PMC8754572.

    Gauthier-Coles G, Vennitti J, Zhang Z, Comb WC, Xing S, Javed K, Bröer A, Bröer S. Quantitative modelling of amino acid transport and homeostasis in
    mammalian cells. Nat Commun. 2021 Sep 6;12(1):5282. doi: 10.1038/s41467-021-25563-x. PMID: 34489418; PMCID: PMC8421413.

    Fairweather SJ, Okada S, Gauthier-Coles G, Javed K, Bröer A, Bröer S. A GC-MS/Single-Cell Method to Evaluate Membrane Transporter Substrate Specificity and
    Signaling. Front Mol Biosci. 2021 Apr 13;8:646574. doi:10.3389/fmolb.2021.646574. PMID: 33928121; PMCID: PMC8076599.

  • Bröer A, Rahimi F, Bröer S. Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells. J Biol Chem. 2016 Apr 26.
  • Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab. 2015; 4(5):406-17.
  • Tumer, E., Broer, A., Balkrishna, S., Julich, T. and Broer, S. (2013) Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. The Journal of biological chemistry. 288, 33813-33823
  • Yabas, M., Teh, C. E., Frankenreiter, S., Lal, D., Roots, C. M., Whittle, B., Andrews, D. T., Zhang, Y., Teoh, N. C., Sprent, J., Tze, L. E., Kucharska, E. M., Kofler, J., Farell, G. C., Broer, S., Goodnow, C. C. and Enders, A. (2011) ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol. 12, 441-449
  • Broer, S. and Palacin, M. (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J. 436, 193-211
  • Kowalczuk, S., Broer, A., Tietze, N., Vanslambrouck, J. M., Rasko, J. E. and Broer, S. (2008) A protein complex in the brush-border membrane explains a Hartnup disorder allele. Faseb J. 22, 2880-2887
  • Seow, H. F., Broer, S., Broer, A., Bailey, C. G., Potter, S. J., Cavanaugh, J. A. and Rasko, J. E. (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet. 36, 1003-1007
  • Broer, A., Klingel, K., Kowalczuk, S., Rasko, J. E., Cavanaugh, J. and Broer, S. (2004) Molecular Cloning of Mouse Amino Acid Transport System B0, a Neutral Amino Acid Transporter Related to Hartnup Disorder. J Biol Chem. 279, 24467-24476.

All publications

ARC Discovery projects and DECRA fellowships

Story | Monday 17 November 2014

Carbohydrates and healthy eating

Story | Monday 29 April 2013

Do steaks make you big?

Story | Thursday 16 June 2011
Adjusting the intake of high protein foods like meat, eggs and milk products could determine whether you become a rugby player or marathon runner and may help you lose weight, according to new research published this month in the Journal of Biological Chemistry.

Kidney function discovery sheds light on genetic complexity

Story | Thursday 6 November 2008
To find a cure for cancer, haemophilia and other diseases, researchers need to be looking for complex, interacting genetic factors, according to the authors of a new study.