Kevin Saliba
Content navigation
About
Kevin Saliba obtained a BSc (Chemistry) and a PhD (Pharmacology) from the University of Cape Town, South Africa. He was a post-doctoral fellow in the laboratory of Professor Kiaran Kirk at The Australian National University between 1997 and 2004. Late in 2004 he took up a lectureship at The Australian National University Medical School. He was promoted to senior lecturer in 2008, Associate Professor in 2014 and Professor in 2019. He is currently Head of the Division of Biomedical Science and Biochemistry at the Research School of Biology.
Awards
Affiliations
Groups
Research interests
- Medical Parasitology
- Pharmacology and Therapeutics
- Transporters
- Cell Metabolism
- Infectious Agents
- Enzymes
Collaborators
- Professor Rudi Marquez (University of Canterbury, Christchurch, New Zealand)
- Professor Erick Strauss (Stellenbosch University, Stellenbosch, South Africa)
- Professor Karine Auclair (McGill University, Montreal, Canada)
Projects
- Vitamin utilisation by malaria parasites, Supervisor
Teaching information
- Physiology and Pharmacology to Year 1 and Year 2 MChD students (Lecturer)
- MChD Research Projects (Supervisor)
- PhB Advanced Study Courses (Supervisor)
- BIOL3208/3209 Research Projects (Supervisor).
Location
Rm 2.020, Level 2, Linnaeus Building (134)
Publications
Publications
- Spry, C, Sewell, A, Hering, Y et al 2018, 'Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation', European Journal of Medicinal Chemistry, vol. 143, pp. 1139-1147.
- Tjhin, E, Spry, C, Sewell, A et al 2018, 'Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues', PLoS Pathogens, vol. 14, no. 4, pp. 1-30.
- de Villiers, M, Spry, C, Macuamule, C et al 2017, 'Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target', ACS Infectious Diseases, vol. 3, no. 7, pp. 527-541.
- Guan, J, Hachey, M, Puri, L et al 2016, 'A cross-metathesis approach to novel pantothenamide derivatives', Beilstein Journal of Organic Chemistry, vol. 12, pp. 963-968.
- Howieson, V, Tran, E, Hoegl, A et al 2016, 'Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency', Antimicrobial Agents and Chemotherapy, vol. 60, no. 12, pp. 7146-7152pp.
- Fletcher, S, Lucantoni, L, Sykes, M et al 2016, 'Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway', Parasites and Vectors, vol. 9, no. 1, pp. 1-13.
- Tran, P, Tate, C, Ridgway, M et al 2016, 'Human dihydrofolate reductase influences the sensitivity of the malaria parasite Plasmodium falciparum to ketotifen? A cautionary tale in screening transgenic parasites', International Journal for Parasitology: Drugs and Drug Resistance, 6,179-183.
- Berna, A, McCarthy, J, Wang, R et al 2015, 'Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection', Journal of Infectious Diseases, vol. 212, no. 7, pp. 1120-1128.
- Macuamule, C, Tjhin, E, Jana, C et al 2015, 'A Pantetheinase-Resistant Pantothenamide with Potent, On-Target, and Selective Antiplasmodial Activity', Antimicrobial Agents and Chemotherapy, vol. 59, no. 6, pp. 3666-3668.
- Saliba, K & Spry, C 2015, 'Coenzyme A Biosynthesis', in Marcel Hommel & Peter Kremsner (ed.), Encyclopedia of Malaria, Springer New York, Online, pp. 1-11pp.
- Spry, C, Saliba, K & Strauss, E 2014, 'A miniaturized assay for measuring small molecule phosphorylation in the presence of complex matrices', Analytical Biochemistry, vol. 451, pp. 76-78.
- Hoegl, A, Darabi, H, Tran, E et al 2014, 'Stereochemical modification of geminal dialkyl substituents on pantothenamides alters antimicrobial activity', Bioorganic and Medicinal Chemistry Letters, vol. 24, no. 15, pp. 3274-3277.
- Saliba, K & Spry, C 2014, 'Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: The case for pantothenamides', Biochemical Society Transactions, vol. 42, no. 4, pp. 1087-1093.
- Spry, C, Macuamule, C, Lin, Z et al 2013, 'Pantothenamides Are Potent, On-Target Inhibitors of Plasmodium falciparum Growth When Serum Pantetheinase Is Inactivated', PLOS ONE (Public Library of Science), vol. 8, no. 2, pp. 1-12.
- de Villiers, M, Macuamule, C, Spry, C et al 2013, 'Structural modification of pantothenamides counteracts degradation by pantetheinase and improves antiplasmodial activity', ACS Medicinal Chemistry Letters, vol. 4, no. 8, pp. 784-789.
- Tjhin, E, Staines, H, Van Schalkwyk, D et al 2013, 'Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis', FEBS Letters, vol. 587, no. 19, pp. 3182-3187.
- Chan, X, Wrenger, C, Stahl, K et al 2013, 'Chemical and genetic validation of thiamine utilization as an antimalarial drug target', Nature Communications, vol. 4, pp. 1-11.
- Van Schalkwyk, D, Saliba, K, Biagini, G et al 2013, 'Loss of pH Control in Plasmodium falciparumParasites Subjected to Oxidative Stress', PLoS ONE, 8(3), e58933/1-8.
- Henry, R, Cobbold, S, Allen, R et al 2010, 'An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum', Journal of Biological Chemistry, 285, 18615-18626.
- Kirk, K, Staines, H, Martin, R et al 1999, 'Transport properties of the host cell membrane', in Gregory R. Bock, Gail Cardew (ed.), Novartis Foundation Symposium 226 - Transport and Trafficking in the Malaria-Infected Erythrocyte, John Wiley & Sons, Inc., England.
- Saliba, K, Folb, P & Smith, P 1998, 'Â Role for the Plasmodium falciparum digestive vacuole in chloroquine resistance', Biochemical Pharmacology, vol. 56, no. 3, pp. 313-320.
- Saliba, K & Kirk, K 1998, 'Clotrimazole inhibits the growth of the malaria parasite Plasmodium falciparum in vitro'. Transactions of the Royal Society of Tropical Medicine and Hygiene, 92, 666-667.
- Saliba, K & Kirk, K 1998, 'Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum-infected human erythrocytes via a parasite-induced pathway', Molecular and Biochemical Parasitology, 94, 297-301.
- Saliba, K, Horner, H & Kirk, K 1998, 'Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum', Journal of Biological Chemistry, 273, 10190-10195.
- Spry, C, Van Schalkwyk, D, Strauss, E et al 2010, 'Pantothenate Utilization by Plasmodium as a Target for Antimalarial Chemotherapy', Infectious Disorders - Drug Targets, vol. 10, no. 3, pp. 200-216.
- Van Schalkwyk, D, Chan, X, Misiano, P et al 2010, 'Inhibition of Plasmodium falciparum pH regulation by small molecule indole derivates results in rapid parasite death', Biochemical Pharmacology, vol. 79, no. 9, pp. 1291-1299.
- Spry, C & Saliba, K 2009, 'The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis', Journal of Biological Chemistry, vol. 284, no. 37, pp. 24904-24913.
- Kirk, K, Howitt, S, Broer, S et al 2009, 'Purine uptake in Plasmodium: transport versus metabolism', Trends in Parasitology, 25, 246-249.
- Van Schalkwyk, D, Priebe, W & Saliba, K 2008, 'The inhibitory effect of 2-halo derivatives of D-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum', Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 2, pp. 511-517.
- Lehane, A, Hayward, R, Saliba, K et al 2008, 'A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites', Journal of Cell Science, vol. 121, no. 10, pp. 1624-1632.
- Lehane, A & Saliba, K 2008, 'Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite', BMC Research Notes, vol. 1, no. 26, p. 5.
- Spry, C, Kirk, K & Saliba, K 2008, 'Coenzyme A biosynthesis: an antimicrobial drug target', FEMS Microbiology Reviews, vol. 32, pp. 56-106.
- Saliba, K, Lehane, A & Kirk, K 2008, 'A polymorphic drug pump in the malaria parasite', Molecular Microbiology, vol. 70, no. 4, pp. 775-779.
- Downie, M, Saliba, K, Broer, S et al 2008, 'Purine nucleobase transport in the intraerythrocytic malaria parasite', International Journal for Parasitology, 38, 203-209.
- Lehane, A, Marchetti, R, Spry, C et al 2007, 'Feedback Inhibition of Pantothenate Kinase Regulates Pantothenol Uptake by the Malaria Parasite', Journal of Biological Chemistry, vol. 282, no. 35, pp. 25395-25405.
- Kirk, K & Saliba, K 2007, 'Targeting Nutrient Uptake Mechanisms in Plasmodium', Current Drug Targets, vol. 8, no. 1, pp. 75-88.
- Staines, H, Alkhalil, A, Allen, R et al 2007, 'Electrophysiological studies of malaria parasite-infected erythrocytes: Current status', International Journal for Parasitology, vol. 37, no. 5, pp. 475-482.
- Downie, M, Saliba, K, Howitt, S et al 2006, 'Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1', Molecular Microbiology, 60, 738-748.
- Hayward, R, Saliba, K & Kirk, K 2006, 'The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance', Journal of Cell Science, 119, 1016-1025.
- Saliba, K (co-first author), Martin, R (co-first author), Broer, A et al 2006, 'Sodium-dependent uptake of inorganic phosphate by the intracelluar malaria parasite', Nature, vol. 443, pp. 582-585.
- Hayward, R, Saliba, K & Kirk, K 2005, 'Mutations in pfmdr1 Modulate the Sensitivity of Plasmodium falciparum to the Intrinsic Antiplasmodial Activity of Verapamil', Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 840-842.
- Hayward, R, Saliba, K & Kirk, K 2005, 'pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum', Molecular Microbiology, vol. 55, no. 4, pp. 1285-1295.
- Kirk, K, Martin, R, Broer, S et al 2005, 'Plasmodium permeomics: membrane transport proteins in the malaria parasite.', Current Topics in Microbiology and Immunology, vol. 295, pp. 325-56.
- Saliba, K & Kirk, K 2005, 'CJ-15,801, a fungal natural product, inhibits the intraerythrocytic stage of Plasmodium falciparum in vitro via an effect on pantothenic acid utilisation', Molecular and Biochemical Parasitology, vol. 141, no. 1, pp. 129-131.
- Spry, C, Chai, C, Kirk, K et al 2005, 'A Class of Pantothenic Acid Analogs Inhibits Plasmodium falciparum Pantothenate Kinase and Represses the Proliferation of Malaria Parasites', Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4649-4657.
- Saliba, K, Ferru, I & Kirk, K 2005, 'Provitamin B5 (Pantothenol) Inhibits Growth of the Intraerythrocytic Malaria Parasite', Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 632-637.
- Saliba, K, Krishna, S & Kirk, K 2004, 'Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative', FEBS Letters, vol. 570, no. 1-3, pp. 93-96.
- Lehane, A, Saliba, K, Allen, R et al 2004, 'Choline uptake into the malaria parasite is engergized by the membrane potential', Biochemical and Biophysical Research Communications, vol. 320, no. 2, pp. 311-317.
- Go, M, Liu, M, Wilairat, P et al 2004, 'Antiplasmodial Chalcones Inhibit Sorbitol-Induced Hemolysis of Plasmodium falciparum-Infected Erythrocytes', Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3241-3245.
- Kirk, K & Saliba, K 2003, 'The Membrane Physiology of the Malaria-Infected Red Cell', in Ingolf Bernhardt & J Clive Ellory (ed.), Red Cell Membrane Transport in Health and Disease, Springer, Germany, pp. 569-585.
- Saliba, K, Allen, R, Zissis, S et al 2003, 'Acidification of the Malaria Parasites Digestive Vacuole by a H+-ATPase and a H+-pyrophosphatase', Journal of Biological Chemistry, vol. 278, no. 8, pp. 5605-5612.
- Bray, P, Saliba, K, Davies, J et al 2002, 'Further comments on the distribution of acridine orange fluorescence in P. falciparum-infected erythrocytes', Molecular and Biochemical Parasitology, vol. 119, no. 2, pp. 311-313.
- Bray, P, Saliba, K, Davies, J et al 2002, 'Distribution of acridine orange fluorescence in Plasmodium falciparum-infected erythrocytes and its implications for the evaluation of digestive vacuole pH', Molecular and Biochemical Parasitology, vol. 119, no. 2, pp. 301-304.
- Kirk, K & Saliba, K 2002, 'Chloroquine resistance and the pH of the malaria parasites digestive vacuole', Drug Resistance Updates, vol. 4, no. 6, pp. 335-338.
- Saliba, K & Kirk, K 2001, 'Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner', International Journal for Parasitology, vol. 31, no. 12, pp. 1321-1330.
- Biagini, G, Knodler, L, Saliba, K et al 2001, 'Na+-dependent pH Regulation by the Amitochondriate Protozoan Parasite Giardia intestinalis', Journal of Biological Chemistry, vol. 276, no. 31, pp. 29157-29162.
- Elliott, J, Saliba, K & Kirk, K 2001, 'Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum', Biochemical Journal, vol. 355, pp. 733-739.
- Saliba, K & Kirk, K 2001, 'H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite', Journal of Biological Chemistry, 276, 18115-18121.
- Reed, M, Saliba, K, Caruana, S et al 2000, 'Pgh modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum', Nature, vol. 403, pp. 906-909.
- Krishna, S, Woodrow, C, Burchmore, R et al 2000, 'Hexose Transport in Asexual Stages of Plasmodium falciparum and Kinetoplastidae', Parasitology Today, vol. 16, no. 12, pp. 516-521.
- Rickards, R, Rothschild, J, Willis, A et al 1999, 'Calothrixins A and B, Novel Pentacyclic Metabolites from Calothrix Cyanobacteria with Potent Activity against Malaria Parasites and Human Cancer Cells', Tetrahedron, vol. 55, pp. 13513-13520.
- Saliba, K & Kirk, K 1999, 'pH Regulation in the Intracellular Malaria Parasite, Plasmodium falciparum: H+ extrusion via a V-Type H+-ATPase', Journal of Biological Chemistry, vol. 274, no. 47, pp. 33213-33219.
Publication links
- Go to a complete list of publications on Google Scholar.
- Go to ORCiD profile.