Way Group - Plant Ecophysiology and Global Change Biology

One of the most pressing concerns in biology is whether we can predict how plants and ecosystems will respond to climate change. Plants (and particularly forests) are involved in complex feedbacks with Earth’s climate system, such that the responses of plants to warmer, drier conditions in coming decades could either slow or accelerate climate change.

Our lab addresses this uncertainty by studying the physiological responses of trees and other plant groups to high temperatures, drought stress and changes in atmospheric CO2 concentration, with the goal of determining:

1) The mechanisms underpinning plant responses to global change at molecular and biochemical scales.

2) The implications of these responses for the larger community and ecosystem scales.

APPF Technical officers

APPF Technical Assistant

APPF Manager

APPF Senior Technical Officer

APPF Research Officers

APPF Project Officer

Group Leader

Divisional Visitor

Honours Students

APPF Business & Admin Manager

APPF Fellow


ARC Future Fellow

PhD Students

85. Mirabel A, Girardin MP, Metsaranta J, Campbell E, Arsenault A, Way D, Reich PB. (In press) Climate limitations in terrestrial biosphere models do not match forest growth observations in boreal forests. Science of the Total Environment.

84. Manzoni S, Fatichi S, Feng X, Katul GG, Way D, Vico G. (In press) Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models. Biogeosciences https://doi.org/10.5194/bg-2022-36

83. Sanhueza C, Cortes, D, Way D, Funtes F, Bascunan-Godoy L, Fernandez Del-Saz N, Saez P, Bravo LA, Cavieres LA. (2022) Respiratory and photosynthetic responses of Antarctic vascular plants are differentially affected by CO2 enrichment and nocturnal warming. Plants 11: 1520.

82. Kong R, Way DA, Henry H, Smith NG. (2022) Stomatal conductance, not biochemistry, drives low temperature acclimation of photosynthesis in Populus balsamifera regardless of nitrogen availability. Plant Biology 24: 766-779.

81. Posch BC, Zhai D, Coast O, Scafaro AP, Bramley H, Reich PB, Ruan Y-L, Trethowan R, Way DA, Atkin OK. (2022) Night warming drives acclimation of wheat respiratory O2 consumption alongside higher respiratory CO2 losses and reduced biomass. Journal of Experimental Botany 73: 915-926.

80. Smith P, Cheung W, Bernacchi C, McKechnie A, Way D, Cotrufo F, Janssens I, Long S, Penuelas J, Byrne M, Robinson S, Feng X, Jones H, Luo Y, Thackeray S, Beaumont L, Kirschbaum M, Kobayashi K, Conant R. (2022) Essential outcomes for COP26. Global Change Biology. 28: 1-3.

79. Rogers A, Serbin S, Way DA. (2021) Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Global Change Biology 28: 1222-1247.

78. Dusenge ME, Wittemann M, Mujawamariya M, Ntawuhiganayo BE, Zibera E, Ntirugulirwa B, Way D, Nsabimana D, Uddling J, Wallin G. (2021) Limited thermal acclimation of photosynthesis in tropical montane tree species. Global Change Biology 27: 4860-4878.

77. Murphy B, Way DA. (2021) Warming and elevated CO2 alter tamarack C fluxes, growth and mortality: evidence for heat stress-related C starvation in the absence of water stress. Tree Physiology. 41: 2341-2358. (Cover photo)

76. Jagadish KSV*, Way DA*, Sharkey TD. (2021) Scaling plant responses to high temperature from cell to ecosystem. Plant, Cell & Environment 44: 1987-1991. *Joint corresponding authors.

75. Dusenge ME, Ward EJ, Stinziano JR, Warren JM, Wullschleger SD, Hanson PJ, Way DA. (2021) Warming induces divergent leaf C and water dynamics in co-occurring boreal trees. Global Change Biology 27: 3079-3094.

74. Jagadish KSV, Way DA*, Sharkey TD. (2021) Plant heat stress: concepts defining future research. Plant, Cell & Environment 44: 1992-2005. *Corresponding author.

73. Lopez J, Sadok, W, Way DA. (2021) Systemic effects of atmospheric drying on plant physiology and productivity: implications for predicting plant adaptation to climate change. Global Change Biology 27: 1704-1720.

72. Ely K, Rogers A, Agarwal DA, Ainsworth EA, Albert L, Ali A, Anderson J, Aspinwall MJ, Bellasio C, Bernacchi C, Bonnage S, Buckley TN, Bunce J, Burnett AC, Busch FA, Cavanagh A, Cernusak LA, Crystal-Ornelas R, Damerow J, Davidson KJ, De Kauwe MG, Dietze MC, Domingues TF, Dusenge ME, Ellsworth DS, Evans JR, Gauthier PPG, Gimenez BO, Gordon EP, Gough CM, Halbritter AH, Hanson DT, Heskel M, Hogan JA, Hupp JR, Jardine K, Kattge J, Keenan T, Kromdijk J, Kumarathunge DP, Lamour J, Leakey ADB, LeBauer DS, Li Q, Lundgren MR, McDowell N, Meacham-Hensold K, Medlyn BE, Moore DJP, Negrón-Juárez R, Niinemets Ü, Osborne CP, Pivovaroff AL, Poorter H, Reed SC, Ryu Y, Sanz-Saez A, Schmiege SC, Serbin SP, Sharkey TD, Slot M, Smith NG, Sonawane BV, South PF, Souza DC, Stinziano JR, Stuart-Haëntjens E, Taylor SH, Tejera MD, Uddling J, Vandvik V, Varadharajan C, Walker AP, Walker BJ, Warren JM, Way DA, Wolfe BT, Wu J, Wullschleger SD, Xu C, Yan Z, Yang D. (2021) A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics 61: 101232.

71. Way DA. (2021) Announcing GCB Reviews – the past, present and future of global change biology at your fingertips. Global Change Biology 27: 1326-1327.

70. Way DA, Cook A, Rogers A. (2021) The effects of rising CO2 concentrations on terrestrial systems: scaling it up. New Phytologist 229: 2383-2385.

69. Gauthier P, Saenz N, Griffin K, Way DA, Tcherkez G. (2020) Is the Kok effect a respiratory phenomenon? Metabolic insight using 13C labelling in Helianthus annuus (L.) leaves. New Phytologist 228: 1243-1255.

68. Dusenge ME, Madhavji S, Way DA. (2020) Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Global Change Biology 26: 3639-3657.

67. Thackeray SJ, Robinson SA, Smith P, Bruno R, Kirschbaum MUF, Bernacchi C, Byrne M, Cheung W, Cotrufo MF, Gienapp P, Hartley S, Janssens I, Jones H, Kobayashi K, Luo Y, Penuelas J, Sage RF, Suggett DJ, Way D, Long S. (2020) Civil disobedience movements such as School Strike for the Climate are raising public awareness of the climate change emergency. Global Change Biology 26: 1042-1044.

66. Duarte A, Longstaffe F, Way DA. (2020) Nitrogen source and availability influence low CO2 effects on plant performance. Plant Functional Biology 47: 134-144.

65. Domergue J-B, Abadie C, Limami A, Way D, Tcherkez G. (2019) Seed quality and carbon primary metabolism. Plant, Cell & Environment 42: 2776-2788.

64. Zhang Q, Ficklin D, Manzoni S, Wang L, Way DA, Phillips R, Novick K. (2019) Rising vapor pressure deficit increases water use efficiency during drought. Environmental Research Letters 14:074023.

63. Domec JC, Berghoff H, Way D, Moshelion M, Palmroth S, Kets K, Huang C-W, Oren R. (2019) Mechanisms for minimizing height-related stomatal conductance declines in tall vines. Plant, Cell & Environment 42: 3121-3139.

62. Ward EJ, Warren JM, McLennan DA, Dusenge ME, Way DA, Wullschleger SD, Hanson PJ. (2019) Photosynthetic and respiratory responses of two bog shrub species to whole ecosystem warming and elevated CO2 at the boreal-temperate ecotone. Frontiers in Forests and Global Change 2: article 54.

61. Way DA. (2019) Photosynthesis: Just the right temperature. Nature Ecology & Evolution 3: 718-719. Invited News & Views.

60. Vico G, Way DA, Manzoni S, Hurry V. (2019) Can leaf net CO2 assimilation acclimate to keep up with warmer and more variable temperatures? Plant, Cell & Environment 42: 1913-1928.

59. Stinziano JR, Bauerle WL, Way DA. (2019) Modelled net carbon gain responses to climate change in boreal trees: impacts of photosynthetic parameter selection and acclimation. Global Change Biology 25: 1445-1465.

58. KumarathungeD, MedlynBE, DrakeJE, TjoelkerMG, AspinwallMJ, BattagliaM, CanoFJ, CarterK, CavaleriMA, CernusakL, Chambers JQ, CrousKY, De KauweMG, DillawayDN, DreyerE, EllsworthDS, GhannoumO, HanQ, HikosakaK, JensenAM, KellyJWG, Kruger EL, MercadoLM, OnodaY, Reich PB, RogersA, SlotM, SmithNG, TarvainenL, Tissue DT, TogashiHF, TribuzyES, UddlingJ, VårhammarA, Wallin G, Warren JM, Way DA. (2019) Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist 222: 768-784.

57. Way DA, Aspinwall MJ, Drake J, Crous K, Campany C, Ghannoum O, Tissue D, Tjoelker MG. (2019) Responses of respiration in the light to warming in field-grown trees: a comparison of the thermal sensitivity of the Kok and Laisk methods. New Phytologist 222: 132-143.

56. Dusenge ME, Duarte AG, Way DA. (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221: 32-49. Invited Tansley Review.

55. Manzoni S, Čapek P, Porada P, Thurner M, Winterdahl M, Beer C, Brüchert V, Frouz J, Herrmann AM, Lindahl BD, Lyon SW, Šantrůčková H, Vico G, Way D. (2018) Carbon use efficiency from organisms to ecosystems – A synthesis of definitions, theories, and empirical evidence. Biogeosciences 15: 5929-5949.

54. Couvreur V, Ledder G, Manzoni S, Way DA, Muller E, Russo S. (2018) Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance. Plant, Cell & Environment 41: 1821-1839.

53. Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA, Oquist G, Way DA*, Hurry V. (2018) Contrasting acclimation abilities of two dominant northern conifers to elevated CO2 and temperature. Plant, Cell & Environment 41: 1331-1345. *Corresponding author.

52. Stinziano JR, Way DA, Bauerle WL. (2018) Improving models of photosynthetic thermal acclimation: which parameters are most important and how many should be modified? Global Change Biology 24: 1580-1598.

51. Lamba S, Hall M, Räntfors M, Chaudhary N, Linder S, Way D, Uddling J, Wallin G. (2018) Physiological acclimation dampens initial effects of elevated temperature and CO2 in mature boreal Norway spruce. Plant, Cell & Environment 41: 300-313.

50. Tcherkez G, Gauthier P, Buckley T, Busch F, Barbour M, Bruhn D, Heskel M, Gong X, Crous K, Griffin K, Way D, Turnbull M, Adams M, Atkin O, Bender M, Farquhar G, Cornic G. (2017) Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. New Phytologist 216: 986-1001. Invited Tansley Review.

49. Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhaüsser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin J-M, Macalady AK, Martinez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FA, Plaut JA, Pockman WT, Quirk J, Reinhart K, Ripullone F, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG. (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution 1: 1285-1291.

48. Way DA, Stinziano JR, Berghoff H, Oren R. (2017) How well do seasonal dynamics of photosynthetic capacity correlate with leaf proxies and climate fluctuations? Tree Physiology 37: 879-888.

47. Stinziano JR, Way DA. (2017) Autumn photosynthetic decline and growth cessation are decoupled under warming and photoperiod manipulations. Plant, Cell & Environment 40: 1296-1316.

46. Dusenge ME, Way DA. (2017) Warming puts the squeeze on photosynthesis – lessons from tropical trees. Journal of Experimental Botany 68: 2073-2077.

45. Tcherkez G, Gauthier P, Buckley T, Busch F, Barbour M, Bruhn D, Heskel M, Gong X, Crous K, Griffin K, Way D, Turnbull M, Adams M, Atkin O, Bender M, Farquhar G, Cornic G. (2017) Tracking the origin of the Kok effect, 70 years after its discovery. New Phytologist 214: 506-510.

44. Becklin K, Walker SM, Way DA, Ward JK. (2017) CO2 studies remain key to understanding a future world. New Phytologist 214: 34-40. Invited Tansley Insight.

43. Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü, Prentice IC, Serbin SP, Sitch S, Way DA, Zaehle S. (2017) A roadmap for improving the representation of photosynthesis in Earth System Models. New Phytologist 213: 22-42.

42. Paschalis A, Katul GG, Fatichi S, Palmroth S, Way D. (2017) On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment. Agricultural and Forest Meteorology 232: 367-383.

41. Sack L, Ball M, Brodersen C, Donovan L, Davis S, Des Marais D, Givnish T, Hacke U, Huxman T, Jansen S, Jacobsen AL, Johnson D, Koch G, Maurel C, McCulloh K, McDowell NG, McElrone A, Meinzer FC, Melcher PJ, North GB, Pellegrini M, Pockman W, Pratt RB, Santiago LS, Savage J, Scoffoni C, Sevanto S, Sperry JS, Tyerman S, Way D, Holbrook NM. (2016) Plant hydraulics as a central hub integrating plants and ecosystems: meeting report for “Emerging Frontiers in Plant Hydraulics” (Washington, DC, May 2015). Plant, Cell & Environment 39: 2085-2094.

40. Vankoughnett MR, Way DA, Henry HAL. (2016) Winter light exposure increases summer growth in the grass Poa pratensis: implications for snow removal experiments and winter melt events. Environmental and Experimental Botany 131: 32-38.

39. Kroner Y, Way DA. (2016) Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. Global Change Biology 22: 2913-2928.

38. Stinziano JR, Hüner NPH, Way DA. (2015) Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiology 35: 1303-1313. (Cover photo)

37. Quentin A, Pinkard L, Ryan M, Tissue D, Baggett L, Adams H, Maillard P, Marchand J, Landhausser S, Lacointe A, Gibon Y, Anderegg W, Asao S, Atkin O, Bonhomme M, Clay C, Chow P, Clement-Vidal A, Dickman L, Galiano L, Grungweig J, Hartmann H, Hoch G, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield S, Martinez-Vilalta J, Maucourt M, McDowell N, Moing A, Muller B, Nebauer S, Niinemets U, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Saint-Joanis B, Sala A, Smith R, Sterck F, Stinziano J, Unda F, Watanabe M, Way D, Woodruff D. (2015) Assessing non-structural carbohydrates: can results be quantitatively compared among labs? Tree Physiology 35: 1146-1165.

36. Way DA, Holly C, Bruhn D, Ball MC, Atkin OK. (2015) Diurnal and seasonal variation in light and dark respiration in Eucalyptus pauciflora from contrasting light environments. Tree Physiology 35: 840-849. (Cover photo)

35. Creed IF, Lutz B, Hwang T, Way DA. (2015) Climate warming causes intensification of the hydrological cycle in northern forests. Hydrological Processes 29: 3519-3534.

34. Way DA, Long SP. (2015) Climate-smart agriculture and forestry: maintaining plant productivity in a changing world while minimizing production system effects on climate. Plant, Cell & Environment 38: 1683-1685.

33. Way DA, Montgomery R. (2015) Photoperiod constraints on tree migration in a warmer world. Plant, Cell & Environment 38: 1725-1736. Invited review.

32. Moshelion M, Halperin O, Wallach R, Oren R, Way DA. (2015) The role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant, Cell & Environment 38: 1785-1793. Invited review. (Cover photo)

31. Attia Z, Domec J-C, Oren R, Way DA*, Moshelion M. (2015) Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany 66: 4373-4381. *Corresponding author.

30. Way DA, Oren R, Kroner Y. (2015) The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant, Cell & Environment 38: 991-1007. Invited review.

29. Way DA, Katul GG, Manzoni S, Vico G. (2014) Increasing water use efficiency along the C3-to-C4 evolutionary pathway: A stomatal optimization perspective. Journal of Experimental Botany 65: 3683-3693.

28. Stinziano J, Way DA. (2014) Combined effects of rising CO2 and temperature on boreal forests: growth, physiology and limitations. Botany 92: 425-436. Invited review.

27. Yamori W, Hikosaka K, Way DA. (2014) Temperature response of photosynthesis in C3, C4 and CAM plants: acclimation and adaptation. Photosynthesis Research 119: 101-117. Invited meta-analysis.

26. Way DA, Yamori W. (2014) Thermal acclimation of photosynthesis: on the importance of adjusting definitions and accounting for thermal acclimation of respiration. Photosynthesis Research 119: 89-100. Invited meta-analysis.

25. Way DA, Crawley C, Sage RF. (2013) A hot and dry future: warming effects on boreal tree drought tolerance. Tree Physiology 33: 1003-1005.

24. Way DA. (2013) Will rising CO2 and temperatures exacerbate the vulnerability of trees to drought? Tree Physiology 33: 775-778.

23. Way DA*, Ghirardo A*, Kanavati B, Esperschütz J, Monson RK, Jackson RB, Schmitt-Kopplin P, Schnitzler J-P. (2013) Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene and non-isoprene-emitting poplars. New Phytologist 200: 534-546. *Contributed equally.

22. Way DA, Domec J-C, Jackson RB. (2013) Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: implications for tree drought tolerance. Plant, Cell & Environment 36: 103-115.

21. Bauerle WL, Oren R, Way DA, Qian SS, Stoy, PC, Thornton PE, Bowden JD, Hoffman FM, Reynolds RF. (2012) Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America 109: 8612-8617.

20. Fay PA, Jin VL, Way DA, Potter KN, Gill RA, Jackson RB, Polley HW. (2012) Soil-mediated effects of subambient to elevated CO2 on grassland productivity. Nature Climate Change 2: 742-746.

19. Way DA, Pearcy RW. (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32: 1066-1081. (Cover photo)

18. Pearcy RW, Way DA. (2012) Two decades of sunfleck research: Looking back to move forward. Tree Physiology 32: 1059-1061.

17. Way DA. What lies between: the evolution of stomatal traits on the road to C4 photosynthesis. (2012) New Phytologist 193: 291-293.

16. Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK. (2012) Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS ONE 7(2): e32387.

15. Way DA, Oren R, Kim H-S, Katul GG. (2011) How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures. 16 pgs. Journal of Geophysical Research – Biogeosciences doi:10.1029/2011JG001808.

14. Ghannoum O, Way DA. (2011) On the role of ecological adaptation and geographic distribution in the response of trees to climate change. Tree Physiology 31: 1273-1276.

13. Millard P, Way DA. (2011) Tree competition and defense against herbivores: currency matters when counting the cost. Tree Physiology 31: 579-581.

12. Way DA. (2011) Tree phenology responses to warming: spring forward, fall back? Tree Physiology 31: 469-471.

11. Way DA*, Schnitzler J-P*, Monson RK, Jackson RB. (2011) Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 166: 273-282. *Contributed equally.

10. Way DA. (2011) The bigger they are, the harder they fall: CO2 concentration and tree size affect drought tolerance. Tree Physiology 31: 115-116.

9. Way DA. (2011) Parasitic plants and forests: a climate change perspective. Tree Physiology 31: 1-2.

8. Way DA, Oren R. (2010) Differential responses to increased growth temperatures between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiology 30: 669-688.

7. Way DA, LaDeau SL, McCarthy HR, Clark JS, Oren R, Finzi AC, Jackson RB. (2010) Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biology 16: 1046-1056.

6. Sage RF, Coiner HA, Way DA, Runion GB, Prior SA, Torbert HA, Sicher R, Ziska L. (2009) Kudzu (Pueraria montana (Lour.) Merr. variety lobata): a new source of carbohydrate for bioethanol production. Biomass and Bioenergy 33: 57-61.

5. Way DA, Sage RF. (2008) Thermal acclimation of photosynthesis in black spruce (Picea mariana (Mill.) B.S.P.). Plant, Cell & Environment 31: 1250-1262.

4. Sage RF, Way DA, Kubien DS. (2008) Rubisco, Rubisco activase and global climate change. Journal of Experimental Botany 59: 1581-1595.

3. Way DA, Sage RF. (2008) Elevated growth temperatures reduce the carbon gain of black spruce (Picea mariana (Mill.) B.S.P.). Global Change Biology 14: 624-636.

2. Way DA, Seegobin SD, Sage RF. (2007) The effect of carbon and nutrient loading during nursery culture on the growth of black spruce seedlings: a six-year field study. New Forests 34: 307-312.

1. Campbell CD, Sage RF, Kocacinar F, Way DA. (2005) Estimation of the whole-plant CO2 compensation point of tobacco (Nicotiana tabacum L.). Global Change Biology 11: 1956-1967.


Peer-reviewed Book Chapters

2. Way DA, Becklin KM, Ward JK. (2021) Leaf carbon flux responses to climate change: challenges and opportunities. In: K.M. Becklin, J.K. Ward, D.A. Way (Eds.) Photosynthesis, Respiration, and Climate Change. Advances in Photosynthesis and Respiration, Including Bioenergy and Related Processes, volume 46. Dordrecht: Springer. https://www.springer.com/in/book/9783030649258

1. Duarte AG, Dusenge ME, McDonald S, Bennett K, Lemon K, RadfordJ, Way DA. (2021) Photosynthetic acclimation to temperature and CO2: the role of leaf nitrogen. In: K.M. Becklin, J.K. Ward, D.A. Way (Eds.) Photosynthesis, Respiration, and Climate Change. Advances in Photosynthesis and Respiration, Including Bioenergy and Related Processes, volume 46. Dordrecht: Springer. https://www.springer.com/in/book/9783030649258


Government-sponsored Reports

1. Cultivating Diversity (2022). The Expert Panel on Plant Health Risks in Canada (Buszard D, Bobiwash K, Boivin S, Bronson K, Brûlé-Babel A, Congreves K, Degenhardt R, Koch A, Messier C, Nelson H, Phillips PWB, Smith MA, Swanton C, Way D). 236 pages. The Canadian Council of Academies, Ottawa, Canada. https://www.cca-reports.ca/reports/plant-health-risks


Other Publications

1. Way DA, Sage RF. (2005) Short-term exposure to elevated CO2 causes downwards regulation of photosynthesis in black spruce seedlings. In: Photosynthesis: Fundamental Aspects to Global Perspectives. pp. 624-626. Allen Press.

PS Seminar Series - Turning up the heat: How will climate change affect forests and crops?

Event | Thu 6 April 2023
Rising atmospheric CO2 concentrations could reach >1000 ppm by 2100, increasing global temperatures 3-4 °C. Both elevated CO2 and warming affect photosynthesis, altering plant growth, survival, and crop yield and quality.