Ulrike Mathesius

Dr Ulrike Mathesius received her Dipl. Biol. (BSc Hons) at the Technical University of Darmstadt in Germany in 1995. She carried out her PhD at the Research School of Biological Sciences at ANU between 1996-1999, which focused on the symbiosis between rhizobia and legumes. This was followed by post doctoral research at RSBS in the area of plant proteomics between 1999 and 2001. In 2002 she moved to the School of Biochemistry and Molecular Biology with a Post Doctoral Fellowship from the Australian Research Council. Ulrike then held an ARC Research Fellowship (2005-2010) and an ARC Future Fellow (2011-2015) working on the developmental regulation of nodulation, parasitic gall development and lateral root formation in legumes. She is currently a Professor in the Division of Plant Science.

Research interests

  • Microbial and environmental control of root developmental plasticity
  • Nitrogen-fixing symbioses
  • Parasitic root knot nematodes

Recent grants

  • ARC Discovery grant, 2011-2014: $300,000;  U Mathesius and A Nicotra. 'Environmental regulation of root architecture by a gene controlling auxin transport'.
  • ARC Future Fellowship, 2010-1014; $581.885; U Mathesius: 'The role of auxin in organ specification – from symbionts to parasite.'
  • ARC Discovery grant (Australian Research Fellowship); 2005-2010; $421,260; U Mathesius; 'Are flavonoids developmental regulators in plants?'
  • ARC Centre of Excellence for Integrative Legume Research, 2003-2010; $16,900,000; P Gresshoff; BG Rolfe, MB Singh, RJ Rose, BJ Carroll, CA Beveridge, U Mathesius, MA Djordjevic, PL Bhalla, GF Weiller, CR Parrish.
  • Grains Research and Development Corporation Project grant, 2010-2011; $99,429; U Mathesius; 'Evaluation of Plant Manipulation compounds.'
  • Grains Research and Development Corporation Project grant; 2006-2010; $424,000; CA Behm, U Mathesius, S Trowell. 'Exploring a model system to develop controls for plant parasitic nematodes.'


Selected publications

  • Ng JLP, Mathesius U (2018) Acropetal auxin transport inhibition is involved in indeterminate but not determinate nodule formation. Frontiers in Plant Science 9: 169
  • Kohlen W, Ng JLP, Deinum EE, Mathesius U (2017) Auxin transport, metabolism and signaling during nodule initiation: Indeterminate and determinate nodules. Journal of Experimental Botany 69: 229-244
  • Liu Y, Hassan S, Kidd BN, Garg G, Mathesius U, Singh KB, Anderson J (2017) Ethylene signaling is important for isoflavonoid mediated resistance to Rhizoctonia solani in Medicago truncatula. Molecular Plant-Microbe Interactions 30: 691-700
  • Kawasaki A, Donn S, Ryan PR, Mathesius U, DevillaR, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE 11(10): e0164533
  • Goh, C.-H., Nicotra, A.B. and Mathesius U. (2016) The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. Plant, Cell and Environment 39: 883-896
  • Shabala S, White R, Djordjevic MA, Ruan Y-L, Mathesius U (2016) Root to shoot signaling: diverse molecules, pathways and functions. Functional Plant Biology 43: 87-104
  • Ng JLP, Perrine-Walker FM, Wasson AP, Mathesius U (2015) The control of auxin transport in parasitic and symbiotic root–microbe interactions. Plants 4: 606-643
  • Ng JLP, Hassan, S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U (2015) Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27: 2210-2226
  • Mortier V, Wasson A, Jaworek P, De Keyser A, Decroos M, Holsters M, Tarkowski P, Mathesius U, Goormachtig S (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytologist 202: 582-593.
  • Goh C-H, Veliz-Vallejo DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. Journal of Chemical Ecology 39:826–839
  • Jin J, Watt M and Mathesius U (2012) The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiology 159: 489-500.
  • Hassan, S. and Mathesius, U. (2012) The role of flavonoids in root-rhizosphere signaling - opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany 63: 3429-3444.
  • Teplitski M, Mathesius U and Rumbaugh KB (2011) Quorum sensing signal perception and degradation by mammalian and plant cells. Chemical Reviews 111: 100-116.
  • Grunewald W., van Noorden G.E., van Isterdael G., Beeckman T., Gheysen G. and Mathesius U (2009). Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21: 2553-2562. 
  • Wasson AP, Ramsay K, Jones MGK and Mathesius U (2009) Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. New Phytologist 183: 167–179 
  • Mathesius U (2008). Auxin – at the root of nodule development? Functional Plant Biology, 35: 651-668. 
  • Wasson, A.P., Pellerone, F.I. and Mathesius U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629 
  • Bauer, W. D. and Mathesius, U. (2004) Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology 7: 429-433 
  • Mathesius U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G. and Bauer, W. D. (2003) Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proceedings of the National Academy of Science USA 100: 1444-1449. 

All publications

BIOL2203 Field Studies in Functional Ecology

BIOL2142 General Microbiology

BIOL3002 Plants: Genes and the Environment

BIOL3106 Biosecurity

BIOL3109 Environmental and Evolutionary Developmental Biology

BIOL3177 Advances in Molecular Plant Science

BIOL3203 Advanced Microscopy in Biosciences