Badger Group - Photosynthetic functional genomics

My group is focused on understanding the ways different photosynthetic organisms have adapted their photosynthetic biochemistry and physiology to efficiently fix CO2 in environments where CO2 is a limiting substrate. This includes interests in the biochemical deficiencies of Rubisco (where I started in my PhD), how organisms have developed CO2 concentrating mechanisms (my first postdoc) to overcome these limitations, and how the biochemical pathway of photorespiration deals with the waste products of the Rubisco interaction with O2. We use organisms ranging from cyanobacteria and algae up the plant model systems such as Arabidopsis, spanning different evolutionary scales of photosynthetic development.

Group Leader

Filter by keyword

Selected publications

  • Cyanobacterial Carboxysomes: Microcompartments that Facilitate CO2 Fixation. Author(s): Rae, Benjamin D.; Long, Benedict M.; Whitehead, Lynne F.; et al.. Source: Journal of Molecular Microbiology and Biotechnology Volume: 23 Issue: 4-5 Pages: 300-307 Published: 2013. DOI: 10.1159/000351342
  • D2O Solvent Isotope Effects Suggest Uniform Energy Barriers in Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Catalysis. Author(s): Tcherkez, Guillaume G. B.; Bathellier, Camille; Stuart-Williams, Hilary; et al.. Source: Biochemistry Volume: 52 Issue: 5 Pages: 869-877 Published: FEB 5 2013. DOI: 10.1021/bi300933u
  • Gymnosperms Have Increased Capacity for Electron Leakage to Oxygen (Mehler and PTOX reactions) in Photosynthesis Compared with Angiosperms. Author(s): Shirao, Masayoshi; Kuroki, Shu; Kaneko, Kaoru; et al.. Source: Plant and Cell Physiology Volume: 54 Issue: 7 Pages: 1152-1163 Published: JUL 2013. DOI: 10.1093/pcp/pct066
  • The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. Author(s): Price, G. Dean; Pengelly, Jasper J. L.; Forster, Britta; et al.. Source: Journal of Experimental Botany Volume: 64 Issue: 3 Pages: 753-768 Published: JAN 2013. DOI: 10.1093/jxb/ers257
  • Thermal Acclimation of the Symbiotic Alga Symbiodinium spp. Alleviates Photobleaching under Heat Stress. Author(s): Takahashi, Shunichi; Yoshioka-Nishimura, Miho; Nanba, Daisuke; et al.. Source: Plant Physiology Volume: 161 Issue: 1 Pages: 477-485 Published: JAN 2013. DOI: 10.1104/pp.112.207480
  • Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. Author(s): Dwyer, Simon A.; Chow, Wah Soon; Yamori, Wataru; et al.. Source: Journal of Experimental Botany Volume: 63 Issue: 13 Pages: 4781-4795 Published: AUG 2012. DOI: 10.1093/jxb/ers156
  • Structural Determinants of the Outer Shell of beta-Carboxysomes in Synechococcus elongatus PCC 7942: Roles for CcmK2, K3-K4, CcmO, and CcmL. Author(s): Rae, Benjamin D.; Long, Benedict M.; Badger, Murray R.; et al.. Source: Plos One Volume: 7 Issue: 8 Published: AUG 22 2012. DOI: 10.1371/journal.pone.0043871
  • The Genetic Dissection of a Short-Term Response to Low CO2 Supports the Possibility for Peroxide-Mediated Decarboxylation of Photorespiratory Intermediates in the Peroxisome. Author(s): Keech, Olivier; Zhou, Wenxu; Fenske, Ricarda; et al.. Source: Molecular Plant Volume: 5 Issue: 6 Pages: 1413-1416 Published: NOV 2012. DOI: 10.1093/mp/sss104
  • A mutation in the purine biosynthetic enzyme ATASE2 impacts high light signalling and acclimation responses in green and chlorotic sectors of Arabidopsis leaves. Author(s): Woo, Nick S.; Gordon, Matthew J.; Graham, Stephen R.; et al.. Source: Functional Plant Biology Volume: 38 Issue: 5 Pages: 401-419 Published: 2011. DOI: 10.1071/FP10218
  • Over-expression of the beta-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. Author(s): Long, Benedict M.; Rae, Benjamin D.; Badger, Murray R.; et al.. Source: Photosynthesis Research Volume: 109 Issue: 1-3 Pages: 33-45 Published: SEP 2011. DOI: 10.1007/s11120-011-9659-8.

All publications

New partnership advances agricultural research

ANU-CSIRO form new food, agriculture science precinct

Story | Wednesday 1 July 2015
The ANU and CSIRO have joined forces in a new collaborative precinct to help build a sustainable future for the environment, agriculture and global food supplies. Murray Badger and Craig Moritz describe how in an ANU video.

New research centre set to secure food for the future

Story | Saturday 25 October 2014
A research centre exploring new technologies for improving crop yields to secure food supply has been launched at the Research School of Biology.

Water and sunlight the formula for sustainable fuel

Story | Thursday 21 August 2014
“Water is abundant and so is sunlight. It is an exciting prospect to use them to create hydrogen, and do it cheaply and safely,” said Dr Kastoori Hingorani, from the ARC Centre of Excellence for Translational Photosynthesis in the ANU Research School of Biology.

Murray Badger

Story | Tuesday 14 January 2014
Lab research

Three new ARC Centres of Excellence

Story | Thursday 19 December 2013

Boost for food crisis research

Story | Wednesday 12 December 2012

2012 ARC grant success

Story | Friday 23 November 2012

Plant research centre opens

Story | Thursday 31 July 2008

Pages