Dr Rowena Martin

ARC Future Fellow

Rowena Martin is an ARC Future Fellow (Level 2; 2017-2020) in the ANU Research School of Biology.  She carried out her PhD in the ANU School of Biochemistry and Molecular Biology, taking a multidisciplinary approach to understanding membrane transport in the malaria parasite.  Her work spans the fields of cell physiology, biochemistry, bioinformatics, and molecular biology.  In 2005 she took up a postdoc position at the ANU to pursue work she had initiated during her PhD on drug resistance in the malaria parasite and was awarded the 2007 Early Career Researcher Award of the ARC/NHMRC Research Network for Parasitology for this research.

In 2010, Rowena was awarded the Australian Museum Eureka Prize for Early Career Research, a L’Oréal Australia For Women In Science Fellowship [YouTube], and an ACT Young Tall Poppy Science Award.  She has been active in promoting and communicating science in the community - from public lectures at the Australian Museum, the Shine Dome, the Canberra Museum and Art Gallery, and the Australian War Memorial, to playing the role of Naomi in the ABC's science soap CO2Lab.  Rowena has previously held a NHMRC Early Career Biomedical Fellowship (undertaken 2009-2012 at the University of Melbourne's School of Botany and ANU's Research School of Biology) and a NHMRC R.D. Wright Biomedical Fellowship (2013-16 at ANU's Research School of Biology).

Research interests

My lab works on the identification, heterologous expression, and characterisation of transporters, with an emphasis on those involved in drug action and drug resistance in the malaria parasite.  Transporters control the movement of ions, nutrients, and waste products across the membranes of a cell and are central to its physiology.  Proteins of this type also serve as drug targets and/or mediators of drug transport and hence play key roles in the phenomenon of drug resistance.

One of our key experimental systems is the unfertilised oocyte of the frog Xenopus laevis, in which we express and study transporters from the parasite as well as from a range of other organisms.  We complement this system with live parasite assays that indirectly monitor the activity of a transporter within its native environment of the parasite-infected red blood cell.

We use a range of biochemistry, cell physiology, molecular biology, chemistry, and bioinformatic techniques to study:

  • Transporters of the malaria parasite and of other Apicomplexan parasites, with an emphasis on those involved in drug resistance and drug action
  • Design and testing of novel antimalarial drugs and antimalarial strategies
  • Transporters involved in key processes of biomedical, behavioural, or agricultural importance in other organisms, including those encoded by mammals, insects, and plants.
  • The functions and physiological roles of splice variants of transporters

More about the Martin Lab: Media, awards and past members

Recent grants

  • ANU-Harvard Seed Funding:  R.E. Martin.  2019-2020 funding for the project 'Transporters as Drug targets and drug-resistance mediators in the malaria parasite'.
  • ARC Future Fellowship Level 2:  R.E. Martin.  2017-2020 funding for the project 'The natural function and evolution of an essential parasite transporter'.
  • NHMRC Project Grant:  R.E. Martin (Primary Investigator) and A. M. Lehane (Secondary Investigator).  2017-2019 funding for the project ‘Determining the mechanistic basis of the patterns of inverse drug susceptibility induced by two key drug resistance proteins of the malaria parasite’.
  • NHMRC Early Career Biomedical Fellowship:  R. L. Summers (Primary Investigator) and R. E. Martin (Secondary Investigator).  2017-2020 funding for the project 'Protecting the Efficacy of Antimalarial Therapies with Novel Approaches to Suppress the Emergence of Drug Resistance'.
  • NHMRC Small Equipment Grant:  R.E. Martin.  2015 funding ($50,000) for a MicroBeta2 Microplate Counter.
  • NHMRC Career Development Fellowship (R.D. Wright Biomedical) 1053082:  R.E. Martin.  2013-2016 funding ($397,724) for the project ‘Understanding how to combat drug resistance in the malaria parasite:  Examination of two proteins that are key to the parasite’s ability to evade the toxic effects of antimalarial drugs’.  Commenced in 2013.
  • NHMRC Small Equipment Grant:  R.E. Martin, S. Bröer, and K. Kirk.  2011 funding ($31,241) for a Multichannel Systems "Roboinject Robot".
  • NHMRC Project Grant 1007035:  R.E. Martin.  2011-2013 funding ($467,373) for the project ‘Interactions between the malaria parasite’s chloroquine resistance transporter and antimalarial drugs’.
  • L’Oréal Australia For Women In Science Fellowship:  R.E. Martin.  2010-2011 funding ($20,000) for the project ‘What is the normal physiological role of the malaria parasite’s chloroquine resistance transporter?’.
  • NHMRC Project Grant 471472:  R.E. Martin.  2008-2010 funding ($384,375) for the project ‘Characterization of the chloroquine resistance transporter of the malaria parasite’.
  • NHMRC Early Career Biomedical Fellowship 520320:  R.E. Martin.  2009-2012 funding ($285,000) for the project ‘Trafficking of the malaria parasite's chloroquine resistance transporter’.  Awarded in 2007.

All publications


Google Scholar page

Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, Llinas M, Hogg SJ, Summers RL, McConville MJ, and Martin RE (2020).  The natural function of the malaria parasite’s chloroquine resistance transporter.  Nature Communications, 11: Article 3922.

Sailer ZR, Shafik SH, Summers RL, Joule A, Patterson-Robert A, Martin RE1, and Harms MJ1 (2020).  Inferring a complete genotype-phenotype map from a small number of measured phenotypes.  PLoS Computational Biology, 16: Article e1008243.  [1: Joint senior authors]

Martin RE (2020).  The transportome of the malaria parasite.  Biological Reviews, 95: 305-332.

Zhang V, Kucharski R, Landers C, Richards SN, Bröer S, Martin RE1, and Maleszka R1 (2019).  Characterisation of a dopamine transporter and its splice variant reveals novel features of dopaminergic regulation in the honey bee. Frontiers in Physiology, 10: Article 1375.  [1: Joint senior authors]

Martin RE, Shafik SH, and Richards SN (2018).  Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite.  Current Opinion in Pharmacology, 42: 71-80.

Bushell E1, Gomes AR1, Sanderson T1, Anar B, Girling G, Herd C, Metcalf T, Modrzynska K, Schwach F, Martin RE, Mather MW, McFadden GI, Parts L, Rutledge GG, Vaidya AB, Wengelnik K, Rayner JC, and Billker O (2017).  Functional profiling of a Plasmodium genome reveals an abundance of essential genes.  Cell, 170: 260-72.  [1: Joint first authors]  Open access

Hapuarachchi SV, Cobbold SA1, Shafik SH1, Dennis ASM, McConville MJ, Martin RE, Kirk K, and Lehane AM (2017).  The malaria parasite's lactate transporter PfFNT is the target of antiplasmodial compounds identified in whole cell phenotypic screens.  PLoS Pathogens, 13: e1006180.  [1: Joint second authors]  Open access

Richards SN1, Nash MN1, Baker ES, Webster MW, Lehane AM, Shafik SH, and Martin RE (2016).  Molecular mechanisms for drug hypersensitivity induced by the malaria parasite's chloroquine resistance transporter.  PLOS Pathogens, 12: e1005725.  [1: Joint first authors]  Open access

Veiga MI1, Dhingra SK1, Henrich PP, Straimer J, Gnadig N, Uhlemann A, Martin RE, Lehane AM, and Fidock DA (2016).  Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies.  Nature Communications, 7: 11553.  [1: Joint first authors]  Open access

van Schalkwyk DA1, Nash MN1, Shafik SH1, Summers RL, Lehane AM, Smith PJ, and Martin RE (2015).  Verapamil-sensitive transport of quinacrine and methylene blue via the Plasmodium falciparum chloroquine resistance transporter reduces the parasite's susceptibility to these tricyclic drugs.  Journal of Infectious Diseases, 213: 800-810.  [1: Joint first authors]

Pulcini S, Staines HM, Lee AH, Shafik SH, Bouyer G, Moore CM, Daley DA, Hoke MJ, Altenhofen LM, Painter HJ, Mu J, Llinás M, Ferguson DJP, Martin RE, Fidock DA, Cooper RA, and Krishna S (2015).  Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Scientific Reports, 5: 14552.  Open access

Marchetti RV, Lehane AM, Shafik SH, Winterberg M, Martin RE, and Kirk K (2015).  A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparumNature Communications, 6: Article 6721.  Open access

Kirk K and Martin RE (2015).  Membrane transport in the malaria parasite, in the Encyclopedia of Malaria (P Kremsner & M Hommel chief eds), Springer, pp 1-11.

Bellanca S, Summers RL, Meyrath M, Dave A, Nash MN, Dittmer M, Sanchez CP, Stein WD, Martin RE1, and Lanzer M1 (2014).  Multiple drugs compete for transport via the P. falciparum chloroquine resistance transporter at distinct but interdependent sites.  Journal of Biological Chemistry, 289: 36336-51.  [1: Joint senior authors]  Open access

Teng R1, Lehane AM1, Winterberg M, Shafik SH, Summers RL, Martin RE, van Schalkwyk DA, Junankar PR, and Kirk K (2014).  1H NMR metabolite profiles of different strains of Plasmodium falciparum.  Bioscience Reports34: art:e00150.  [1: Joint first authors]  Open access

Summers RL1, Dave A1, Dolstra TJ, Bellanca S, Marchetti RV, Nash MN, Richards SN, Goh V, Schenk RL, Stein WD, Kirk K, Sanchez CP, Lanzer M2, and Martin RE2 (2014).  Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter.  Proceedings of the National Academy of Sciences USA, 111: E1759-67.  [1, 2: Equal contributions]  Open access

Deane KJ1, Summers RL1, Lehane AM, Martin RE2, and Barrow RA2 (2014).  Chlorpheniramine analogues reverse chloroquine resistance in Plasmodium falciparum by inhibiting PfCRT.  ACS Medicinal Chemistry Letters, 5: 576-81 [1, 2: Equal contributions]

Hrycyna CA1, Summers RL1, Lehane AM1, Pires MM, Namanja H, Bohn K, Kuriakose J, Ferdig M, Henrich PP, Fidock DA, Kirk K, Chmielewski J2, and Martin RE2 (2013). Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum.  ACS Chemical Biology, 9:722-30  [1, 2: Equal contributions]  Open access

Gemma S, Camodeca C, Brindisi M, Brogi S, Kukreja G, Kunjir S, Gabellieri E, Lucantoni L, Habluetzel A, Taramelli D, Basilico N, Gualdani R, Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Martin RE, Summers RL, Lamponi S, Savini L, Fiorini I, Valoti M, Novellino E, Campiani G, and Butini S (2012).  Mimicking the intramolecular hydrogen Bond: synthesis, biological evaluation, and molecular modeling of benzoxazines and quinazolines as potential antimalarial agents.  Journal of Medicinal Chemistry, 55: 10387-10404.

Gemma S, Camodeca C, Sanna Coccone S, Joshi BP, Bernetti M, Moretti V, Brogi S, Bonache MC, Savini L, Taramelli D, Basilico N, Parapini S, Rottmann M, Brun R, Lamponi S, Caccia S, Guiso G, Summers RL, Martin RE, Saponara S, Gorelli B, Novellino E, Campiani G, and Butini S (2012).  Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling.  Journal of Medicinal Chemistry, 55: 6948-67.

Martin RE, Butterworth A, Gardiner D, Kirk K, McCarthy JS, and Skinner-Adams TS (2012).  Saquinavir inhibits the malaria parasite's chloroquine resistance transporter.  Antimicrobial Agents and Chemotherapy, 56: 2283-9.  Open access

Summers, RL, Nash MN, and Martin RE (2012).  Know your enemy: Understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics.  Cellular and Molecular Life Sciences, 69, 1967-95.

Zishiri VK, Joshi MC, Hunter R, Chibale K, Smith PJ, Summers RL, Martin RE, and Egan TJ (2011).  Quinoline antimalarials containing a dibemethin group are active against chloroquine-resistant Plasmodium falciparum and inhibit chloroquine transport via the P. falciparum chloroquine resistance transporter.  Journal of Medicinal Chemistry, 54, 6956-68.

Zishiri VK, Hunter R, Smith PJ, Taylor D, Summers RL, Kirk K, Martin RE, and Egan TJ (2011).  A series of structurally simple chloroquine chemosensitizing dibemethin derivatives that inhibit chloroquine transport by PfCRT.  European Journal of Medicinal Chemistry, 46: 1729-42.

Cobbold SA, Martin RE, and Kirk K (2011).  Methionine transport in the malaria parasite, Plasmodium falciparum.  International Journal of Parasitology, 41: 125-135.    

Summers, RL and Martin RE (2010).  Functional characteristics of the malaria parasite’s ‘chloroquine resistance transporter’: implications for chemotherapy.  Virulence, 1, 304-08.  Open access

Martin RE, Ginsburg H and Kirk K (2009).  Membrane transport proteins of the malaria parasite. Molecular Microbiology, 74: 519-528.

Martin RE, Marchetti RV, Cowan AI, Howitt SM, Bröer S, and Kirk K (2009).  Chloroquine transport via the malaria parasite’s ‘Chloroquine Resistance Transporter’.  Science325, 1680-82.  

  • Commentaries on Martin et al 2009:
  • Nelson, N (2009) Faculty of 1000, article 1165434a;
  • Sibley, LD (2009) Faculty of 1000, article 1165434b;
  • This week in Science (2009) Science, 325: 1596-7.
  • Cited by the Wikipedia article Chloroquine.

Martin RE and Kirk K (2007).  Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum.  Blood, 109: 2217-24.

Henry RI, Martin RE, Howitt SM, and Kirk K (2007).  Localisation of a candidate anion transporter to the surface of the malaria parasite.  Biochem. Biophys. Res. Comm. 363: 288-291.

Saliba KJ1Martin RE1, Bröer A, Henry RI, McCarthy CS, Downie MJ, Allen RJW, Mullin KA, McFadden GI, Bröer S2, and Kirk K2 (2006).  Na+-dependent uptake of an essential nutrient by the intracellular malaria parasite.  Nature,443: 582-85.  [1, 2: Equal contributions]

  • Commentary on Saliba, Martin et al 2006:  Merzendorfer, H. (2007) J Exp Biol, 210: v-vi.

Bray PG1Martin RE1, Tilley L, Ward SA, Kirk K, and Fidock DA (2005).  Defining the role of PfCRT in P. falciparum chloroquine resistance.  Molecular Microbiology, 56: 323-33.  [1: Joint first authors]

Martin RE, Henry RI, Abbey JL, Clements JD, and Kirk K (2005).  The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum.  Genome Biology, 6: R26.  Open access

Kirk K, Martin RE, Bröer S, Howitt SM, and Saliba KJ (2005).  Plasmodium Permeomics: Membrane transport proteins in the malaria parasite. Current Topics in Microbiology and Immunology: Malaria (S. Krishna and D. Sullivan, eds), 295: 325-356.

Martin RE and Kirk K (2004).  The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily.  Molecular Biology and Evolution, 21: 1938-49.

  • Commentaries on Martin & Kirk 2004:
  • Egan, TJ. (2004) Drug Discovery Today, 9: 814-815;
  • Hughes, A. (2004) Faculty of 1000, article 15240840.

Clements JD and Martin RE (2002).  Identification of novel membrane proteins by searching for patterns in hydropathy profiles.  FEBS Journal, 269: 2101-07.

Saliba KJ, Martin RE, Staines HM, and Kirk K (1999).  A novel anion channel in the malaria-infected erythrocyte: opportunities for antimalarial chemotherapy, in Chloride Channels (RZ Kozlowski, ed), Isis Medical Media, pp 137‐48.

Kirk K, Staines HM, Martin RE, and Saliba KJ (1999).  Transport properties of the host cell membrane, in transport and trafficking in the malaria‐infected rrythrocyte, Wiley, Chichester (Novartis Foundation Symposium 226), pp 55‐73.



Rowena supervises Summer Scholars, PhB Advanced Study Courses, other undergraduate research projects, and Masters of Science research projects.