Flavonoid functions in nitrogen-fixing symbioses

The aim of this project is to understand the molecular mechanisms of plant flavonoids in nitrogen fixing symbioses of legumes.

Flavonoids are a class of secondary plant metabolites that have a range of functions in signalling, defence, and gene and protein regulation. We are investigating how certain plant flavonoids control root symbioses as regulators of auxin transport in the plant and in the signalling between plants and microbes. We are using RNA interference, gene profiling and fluorescence microscopy to manipulate the flavonoid pathway and unravel their targets in plants.

Recent key publications

  • Ng JLP, Hassan, S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U (2015) Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27: 2210-2226
  • Hassan S and Mathesius U (2012) The role of flavonoids in root-rhizosphere signaling - opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany 63: 3429-3444.
  • Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, and Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant Journal 65, 622–633
  • Laffont C, Blanchet S, Lapierre C, Brocard L, Ratet P, Crespi M, Mathesius U and Frugier F (2010) The Compact Root Architecture 1 gene regulates lignification, flavonoid production and polar auxin transport in Medicago truncatula. Plant Physiology 153: 1597-1607
  • Wasson AP, Ramsay K, Jones MGK, Mathesius U (2009) Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. New Phytologist 183: 167–179
  • Wasson, A.P., Pellerone, F.I. and Mathesius U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629.