Dewar Group - Entropy in biological and physical systems

Binary code

Our research spans biology and physics. We use ideas and tools from statistical physics to understand and predict the behaviour of complex biological and physical systems. Biological phenomena of interest include the evolutionary optimisation of key enzymes such as ATP-synthase and Rubisco, plant trait adaptation to environmental change, and macro-ecological patterns of biodiversity. In physics we study statistical patterns in fluid turbulence and Earth’s climate. Entropy and entropy production provide unifying concepts in our work.




Roderick Dewar

Roderick Dewar
Roderick Dewar studied mathematical physics at the University of Edinburgh (BSc Hons, 1982), where he also carried out his PhD...


Open to students


Selected publications

  • Dewar RC, Mauranen A, Makela A, Holtta T, Medlyn B, Vesala T. 2017. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist (in press).
  • Bertram, Dewar RC. 2015. Combining mechanism and drift in community ecology: a novel statistical mechanics approach. Theoretical Ecology doi: 10.1007/s12080-015-0259-7.
  • Meir P, Mencuccini M, Dewar RC. 2015. Drought-related tree mortality:addressing the gaps in understanding and prediction. New Phytologist (Tansley insights) 207, 28-33
  • Bertram J. 2015. Maximum kinetic energy dissipation and the stability of turbulent Poiseuille flow. Journal of Fluid Mechanics 767, 342-363.
  • Bertram J. 2014. Maximum entropy models of ecosystem functioning. In Proceedings of the 33rd Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013), AIP Conference Proceedings 1636, 131-136.
  • Dewar RC. 2014. A general maximum entropy framework for thermodynamic variational principles. In Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013), AIP Conference Proceedings 1636, 137-144.
  • Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K. 2014. Beyond the second law: an overview. In Beyond The Second Law: Entropy Production and Non-equilibrium Systems (eds: Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K), Springer (Book Series: Understanding Complex Systems), pp. 3-27
  • Dewar RC, Maritan A. 2014. A theoretical basis for maximum entropy production. In Beyond The Second Law: Entropy Production and Non-equilibrium Systems (eds: Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K), Springer (Book Series: Understanding Complex Systems), pp. 49-71
  • Bertram J, Dewar RC. 2013. Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses. Ecology, 94, 2138-2144
  • McMurtrie RE, Dewar RC. 2013. New insights into carbon allocation by trees from the hypothesis that annual wood production is maximised. New Phytologist, DOI: 10.1111/nph.12344.
  • Dewar RC, Tarvainen L, Parker K*, Wallin G, McMurtrie RE. 2012. Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area. Tree Physiology 31, 520-534.
  • McMurtrie RE, Iversen CM, Dewar RC, Medlyn BE, Näsholm T, Pepper DA, Norby RJ. 2012. Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging. Ecology & Evolution 2(6), 1235-1250.
  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R. 2012. Modeling carbon allocation in trees: a search for principles. Tree Physiology 32, 648-666.
  • Dewar RC, Sherwin WB, Thomas E*, Holleley CE, Nichols RA. 2011. Predictions of single-nucleotide polymorphism differentiation between two populations in terms of mutual information. Molecular Ecology 20, 3156-3166. 
  • McMurtrie RE, Dewar RC. 2011. Leaf trait variation explained by the hypothesis that plants maximise their canopy carbon export over the lifespan of leaves. Tree Physiology 31, 1007-1023.
  • Dewar RC. 2010. Maximum entropy production and plant optimization theories. Philosophical Transactions of the Royal Society B (Biological Sciences) 365, 1429-1435. Contribution to Theme Issue (eds. Kleidon A, Cox PM, Mahli Y): Maximum entropy production in ecological and environmental systems: applications and implications.
  • Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT. 2009. Optimal function explains forest responses to global change. BioScience 59(2), 127-139.
  • Dewar RC. 2009. Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931-944. Contribution to Special Issue (eds. Dyke J, Kleidon A): What is Maximum Entropy Production and how should we apply it?
  • Magnani F, Dewar RC, Borghetti M. 2009. Leakage and spillover effects of forest management on carbon storage: theoretical insights from a simple model. Tellus B 61, 385-393.
  • Dewar RC, Porté A. 2008. Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology 251, 389-403.
  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM. 2008. Why is plant growth response to CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology 35, 521-534.
  • Dewar RC, Juretić D, Županović P. 2006. The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chemical Physics Letters 430, 177-182. 
  • Dewar RC. 2005. Maximum entropy production and the fluctuation theorem. Journal of Physics A (Mathematical and General) 38, L371-L381.
  • Dewar RC. 2004. Maximum entropy production and non-equilibrium statistical mechanics. In Non-Equilibrium Thermodynamics and Entropy Production : Life, Earth and Beyond (eds. Kleidon A, Lorenz R), Springer-Verlag, pp. 41-55.
  • Dewar RC. 2003. Information theoretic explanation of maximum entropy production, the fluctuation theorem and self-organized criticality in non-equilibrium stationary states. Journal of Physics A (Mathematical and General) 36, 631-641.

All publications

News & events


ARC logo
The School has done very well with regards to Discovery projects and DECRA fellowships.  Congratulations to all successful applicants.

Updated:  18 August 2019/Responsible Officer:  Director RSB/Page Contact:  Webmaster RSB