Skip navigation
The Australian National University

Solomon Lab - Wheat biosecurity

Teaching | Research | Research opportunities | Lab members | Lab awards | Publications | Grants

Associate Professor Peter Solomon

Building 134,
Research School of Biology,
The Australian National University,
Acton, ACT 0200
T: 61253952


Peter completed his undergraduate degree and subsequent PhD studies at The University of Queensland investigating the role of molybdenum containing enzymes in the photosynthetic bacterium Rhodobacter capsulatus. He then undertook a postdoctoral position at the Carlsberg Laboratory in Denmark investigating the nutritional basis of the tomato-Cladosporium fulvum interaction. In 2000, he moved to the Australian Centre for Necrotrophic Fungal Pathogens located at Murdoch University in Perth to further investigate fungal-plant interactions using the Stagonospora nodorum-wheat interaction. In 2008, Peter accepted a Lab Leader position in the Research School of Biology at The Australian National University where his research group is focused on wheat biosecurity. Recently, Peter was awarded an Australian Research Council Future Fellowship to expand his group's interest to cover the devastating wheat pathogen Zymoseptoria tritici.


BIOL3107 Advances in Medical and Plant Biochemistry (Co-convenor)
BIOL3106 Biosecurity (Co-convenor)
BIOL3177 Advances in Plant Science
PhB ASC Supervision

Research interests

Fungal diseases of wheat threaten global food security

Fungal diseases are the cause of millions of tonnes in yield losses each on farms around the world. This is serious issue not only in terms of financial losses, but also when considering food security and stability. As an example, the Table below outlines losses on Australian wheat farms to disease. The top 4 diseases in terms of losses are caused by fungal pathogens (based on 2008 prices). Using today's wheat prices, the losses from fungi in Australia exceed $1 billion dollars, and that is using effective control measures; without these losses would exceed $5 billion dollars. Thus there are many good reasons to better understand how these pathogens cause disease!

Wheat Disease
$/ha AUD
Total losses
yellow spot17.82212
stripe rust10.62127
septoria nodorum blotch9.07108
crown rot6.6379
Pratylenchus neglectus6.1373
Total losses from others26.37314
Total present loss76.94913

How do these pathgoens cause disease?

Our laboratory focuses on two significant pathogens of wheat. Stagonospora nodorum is a fungus that causes leaf and glume blotch disease on wheat (septoria nodorum blotch). This disease causes greater than $100 million dollars in yield losses per annum in Australia alone and has been recently ranked as the third most important disease of wheat in this country. Traditional breeding methods for disease controls have only been partially successful at best and new and innovative anti-fungal strategies are required to prevent disease and secure Australian and global wheat supplies in the future.

Not only is S. nodorum a threat to global food security, its also extremely interesting and versatile to work with! S. nodorum can be cultured in the lab and is amenable to many common genetic techniques such as targeted gene disruption and gene overexpression. The genome sequence has been completed and extensive proteomics and metabolomics resources have been developed making S. nodorum a perfect model pathogen to better understand plant-pathogen interactions.


The second wheat pathogen we study in the lab is Zymoseptoria tritici. Z. tritici is the most important pathogen of wheat in Europe, the region that produces one-fifth of the world's wheat supply. Zymospetoria tritici is a fungal pathogen of wheat related to Stagonospora nodorum, and is the causal agent of the most important wheat disease in Europe (septoria tritici blotch). This single disease alone is responsible for greater than $1 billion dollars in losses each year. The disease is particualrly problematic in that natural sources of resistance are difficult to source and the pathogen is very adept at rapidly evolving fungicide resistance. 

Interestingly, the disease isn't currently a major problem in Australia. There are many postualted reasons for this including the possibility that European isolates of the pathogen have evolved to be more aggressive. Fortuantely, Australian quaratine has prevented these isolates from entering Australia however the pathogen remains a serious biosecurity risk.

Our lab is studying all aspects of the above diseases with a focus implementing this improved undersantding to facilitate new and novel disease management strategies. 

Fungi synthesize an amazing range of novel and active compounds!

Another research area in the lab is focused on understadning fungal secondary metabolism and idenitfying novel metabolites. Fungal secondary metabolites are amongst the biologically active compunds on the earth and are part of our dailey lives, for good or bad ... . For example, its almost impossible to count how many lives penicillin has saved. More recently, statin-based drugs have an enourmous impact of many peoples lives in terms of cholesterol control. However, not all these compounds are benenfical. Many fungi produce compounds that are lethal. Aflatoxin is the worst carcinogenic toxin produced in nature whilst a variety of palant pathogenic fungi produce mycotoxins that render the plant useless to eat (for humans or animals). And who can forget death cap mushrooms!

Our lab has multiple projects available from everything including determining the relevance of these secondary metabolite compounds on plant disease to isolating new compounds as novel bioactives.

Current projects

Studying pathogen proteins that cause disease

Effector proteins cause disease! How do they do it?        Show more detail...

Characterising the Zymospetoria tritici - wheat interaction

A primary biosecurity threat to the Australian wheat industry        Show more detail...

Novel metabolite discovery and characterisation

Fungi produce many biological active compounds. What are they and what do they do?        Show more detail...

Student research opportunities

PhD projects are now available to study a wide range of topics in biosecurity and pathogenesis

Top-up scholarships are available!        Show more detail...

Honours projects are now available to study a wide range of topics in biosecurity and pathogenesis

Honours scholarships are available!        Show more detail...

Bioinformatics Summer Scholarship projects

Are you interested in putting genomes together and discovering what they do?        Show more detail...

PhD and Honours students should note that as many of the projects in the Solomon lab are focussed solving problems within the Australian wheat industries, substantial scholarship top-ups are possible through the Grains Research and Development Corporation.

Lab members

  • Eva Antoni (PhD student)
  • Susan Breen (Postdoctoral Scientist)
  • Liam Cassidy (PhD student)
  • Yit Heng Chooi (Postdoctoral Scientist)
  • Shao-Yu Lin (PhD student)
  • Megan McDonald (Postdoctoral Scientist)
  • Oliver Mead (PhD student)
  • Mariano Jordi Muria Gonzalez (PhD student)
  • Peter Solomon (Lab Leader)
  • Adam Taranto (PhD student)
  • Elisha Thynne (PhD student)
  • Melanie Bettina Wagner (Divisional Visitor)
  • Britta Winterberg (Postdoctoral Scientist)

» Go to lab directory

Solomon lab - March 2014


2013 Wagga wagga field trip

In October, we were kindly hosted by Dr. Andrew Milgate  (NSW DPI) on a tour of various infected wheat and barley at Wagga wagga. This was a fantastic opportunity to have a look at the diseases in the field that we normally only see under a microscope! 


2013 International Congress on Plant Pathology, Beijing, China

In August, Peter, Megan and Lauren attended the International Congress on Plant Pathology in Beijing. The meeting was a fantastic opportunity to catch up with what was happening in plant pathology and to hear about some of the new techniques emerging. We would like to thank the GRDC for their support in attending the meeting and a summary can be found on page 29 of the November-Decmber 2013 issue of Ground Cover.

Lab awards and achievements

  • Susan Breen was awarded a $1000 travel grant from the IS-MPMI Congress Travel Award Committee to attend the XVI International Congress on MPMI in Rhodes, Greece, 2014.
  • Megan McDonald was awarded a GRDC Travel Grant to attend the 2013 International Congress on Plant Pathology, Beijing, China
  • Melanie Wagner, won the APPS Poster Prize at the 2012 COMBIO conference in Adelaide
  • Lauren Du Fall, won the Hiroto Naora Award for Student Academic Achievement in Plant Sciences, 2011
  • Peter Solomon, awarded an Australian Research Council Future Fellowship, 2011
  • Peter Solomon, featured in the Winter 2011 ANU Reporter magazine
  • Liam Cassidy, Best Student Poster, Lorne Proteomics Conference, Lorne 2010 
  • Lauren Du Fall, Best Plant Poster, 2nd Australasian Metabolomics Conference, Melbourne 2010


Selected publications

1. Title: Characterising the Role of GABA and Its Metabolism in the Wheat Pathogen Stagonospora nodorum
Author(s): Mead, Oliver; Thynne, Eli; Winterberg, Britta; et al.
Source: Plos One Volume: 8 Issue: 11 Published: NOV 12 2013
Times Cited: 0
DOI: 10.1371/journal.pone.0078368
2. Title: Coverage and Consistency: Bioinformatics Aspects of the Analysis of Multirun iTRAQ Experiments with Wheat Leaves
Author(s): Pascovici, Dana; Gardiner, Donald M.; Song, Xiaomin; et al.
Source: Journal of Proteome Research Volume: 12 Issue: 11 Pages: 4870-4881 Published: NOV 2013
Times Cited: 1
DOI: 10.1021/pr400531y
3. Title: The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat
Author(s): Du Fall, Lauren A.; Solomon, Peter S.
Source: New Phytologist Volume: 200 Issue: 1 Pages: 185-200 Published: OCT 2013
4. Title: A comparative analysis of the heterotrimeric G-protein G alpha, G beta and G gamma subunits in the wheat pathogen Stagonospora nodorum
Author(s): Gummer, Joel P. A.; Trengove, Robert D.; Oliver, Richard P.; et al.
Source: Bmc Microbiology Volume: 12 Published: JUL 3 2012
Times Cited: 1
DOI: 10.1186/1471-2180-12-131
5. Title: A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat
Author(s): Vincent, Delphine; Du Fall, Lauren A.; Livk, Andreja; et al.
Source: Molecular Plant Pathology Volume: 13 Issue: 5 Pages: 467-482 Published: JUN 2012
Times Cited: 3
DOI: 10.1111/j.1364-3703.2011.00763.x
6. Title: Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts
Author(s): Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; et al.
Source: Plos Pathogens Volume: 8 Issue: 9 Published: SEP 2012
Times Cited: 11
DOI: 10.1371/journal.ppat.1002952
7. Title: Metabolomics protocols for filamentous fungi.
Author(s): Gummer, Joel P A; Krill, Christian; Du Fall, Lauren; et al.
Source: Methods in molecular biology (Clifton, N.J.) Volume: 835 Pages: 237-54 Published: 2012
8. Title: Proteomic techniques for plant-fungal interactions.
Author(s): Vincent, Delphine; Tan, Kar-Chun; Cassidy, Liam; et al.
Source: Methods in molecular biology (Clifton, N.J.) Volume: 835 Pages: 75-96 Published: 2012
9. Title: Stagonospora nodorum: From Pathology to Genomics and Host Resistance.
Author(s): Oliver, Richard P; Friesen, Timothy L; Faris, Justin D; et al.
Source: Annual review of phytopathology Volume: 50 Pages: 23-43 Published: 2012-Sep-8
10. Title: The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1
Author(s): Liu, Zhaohui; Zhang, Zengcui; Faris, Justin D.; et al.
Source: Plos Pathogens Volume: 8 Issue: 1 Published: JAN 2012
Times Cited: 9
DOI: 10.1371/journal.ppat.1002467

All publications

Click here to see a full list of publications on the ISI website...

Recent grants

Recent grants include,

Solomon, P.S. (2012) Understanding the production risks from necrotrophic fungi. Grains Research and Development Corporation. $180,000

Solomon, P.S. (2012) Functional characterisation of the necrotrophic effector proteins Tox1 and Tox3 from the wheat pathogen Stagonospora nodorum. ARC Discovery $350,000.

Solomon, P.S. (2011) The identification of Mycosphaerella graminicola effectors that promote pathogenicity on wheat. ARC Future Fellowship $803,186.

Solomon, P.S. (2011) Australian Necrotrophic Fungal Programme. Grains Research and Development Corporation. $500,000 AUD.

Solomon, P.S., Bringans, S. & Lipscombe, R.J. (2011) The development of mass spectrometry techniques for mapping post-translational modification in the wheat pathogen Stagonospora nodorum. ARC Linkage $90,666.

Solomon, P.S, Rathjen, J.P., Hardham, A., Jones, D. & Mathesius, U. (2010) An AKTA Avant protein purification system to unravel plant disease. ANU Major Equipment Committee Grant $80,000 AUD.

AR Hardham, A.R., Kirk, K., Broer, S., Von Caemmerer, S., Mathesius, U., Solomon, P.S., Masle, J., Saliba, K.J., Pogson, B.J., Parish, C.R., Atkin, O.K., Mahalingam, S., Ball, M.C., Tremethick, D.J., Rolph, M., Djordjevic, M.A., Hill, C.E. (2010) Multiphoton confocal microscope. ARC LIEF $600,000 AUD.

Oliver, R.P. & Solomon, P.S. (2009) Australian Centre for Necrotrophic Fungal Pathogens: Fungal Pathogenicity; Continuation. Grains Research and Development Corporation $473,754 AUD.

Solomon, P.S., Oliver, R.P. and Lipscombe, R.J. (2008) Investigating a new paradigm for plant-pathogen interactions; Identification of host-selective toxin proteins in the wheat pathogen Stagonospora nodorum. ARC Discovery $235,000 AUD.

Solomon, P.S., Oliver, R.P. and Lipscombe, R.J. (2008) Proteome mapping of the model fungal plant pathogen Stagonospora nodorum using LC-LC-MS/MS. ARC Linkage $78,000 AUD.

Back to top

Updated:  21 December 2010/Responsible Officer:  Director RSB /Page Contact:  RSB Webmaster